Deterministic parallel algorithms for bilinear objective functions

نویسنده

  • David G. Harris
چکیده

Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set (MIS) with $\tilde O(\log^2 n)$ time and $(m + n) n^{o(1)}$ processors; this is nearly the same as the best randomized parallel algorithms. Previous NC algorithms required either $\log^{2.5} n$ time or $mn$ processors. Other applications of our technique include algorithms of Berger (1997) for maximum acyclic subgraph and Gale-Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (2002). Previous algorithms have had very high processor complexity. We are able to greatly reduce this, with applications to set balancing and the Johnson-Lindenstrauss Lemma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust optimal multi-objective controller design for vehicle rollover prevention

Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The obj...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

A New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure

The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...

متن کامل

Global Optimization of Mixed-Integer Nonlinear Problems

Two novel deterministic global optimization algorithms for nonconvex mixed-integer problems (MINLPs) are proposed, using the advances of the BB algorithm for noncon-vex NLPs Adjiman et al. (1998a). The Special Structure Mixed-Integer BB algorithm (SMIN-BB addresses problems with nonconvexities in the continuous variables and linear and mixed-bilinear participation of the binary variables. The G...

متن کامل

A New Subspace Identification Method for Bilinear Systems

In this paper, asymptotically unbiased subspace algorithms for the identification of bilinear systems are developed. Two three-block subspace algorithms are developed for the deterministic system case and two four-block ones for the combined deterministic-stochastic case. The input signal to the system does not have to be white, which is a major advantage over an existing subspace method for bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08494  شماره 

صفحات  -

تاریخ انتشار 2017